Barlby Lower Ouse Prom ote Develop strategic catchment based solution options to address predicted risks and look for potential opportunities for partnership working | Key Catchment Statistics | | |---|--------| | 2020 Population Equivalent | 8,771 | | 2050 Population Equivalent | 10,661 | | Modelled Consented Storm Overflows | 3 | | Wastewater Pumping Stations | 21 | | Foul and Combined Sewer Length | 37.4km | | Surface Water Sewer Length | 20.7km | | Site of Special Scientific Interest Present | No | | Special Area of Conservation Present | No | | Priority River Habitat | No | | Catchment Wider Resilience Risk Band | High | ### Outcome Summary #### Sewer Flooding Risk By assessing our hydraulic modelling outputs or where not available, our unmodelled methodology, against our bespoke planning objective for sewer flooding, we believe this catchment represents a moderate risk for 2050 #### Storm Overflow Risk By assessing our hydraulic modelling outputs or where not available, our unmodelled methodology, against our bespoke planning objective for Storm Overflows, we believe this catchment represents a moderate risk for 2050 #### WwTW Compliance Risk | | Risk Based Catchment Screening | | | | | | | | | | | | | | | | | |-------------------------------|-----------------------------------|------------------------|------------------------|------|-----|-----------------------------|-----------------------------|------------------------|----------------------|------------------------|--------------------|-----------------------|--|-------|--------------------|--------------------|---------------------| | Catchment
Characterisation | Bathing or
Shellfish
Waters | Discharge to sensitive | Discharge to sensitive | SOAF | CAF | In ternal Sewer
Flooding | Externa I Sewer
Flooding | Pollution
Incidents | WwTW Q
Compliance | WwTW DWF
Compliance | Storm
Overflows | Other RMA
System s | Planned
Residen tia l
Developmen t | WINEP | Sewer
Collapses | Sewer
Blockages | Proceed to
BRAVA | | Yes | No | No | No | No | No | No | Yes | Yes | No | No | No | No | Yes | Yes | Yes | Yes | YES | # Brayton Junction Lower Ouse Did not trigger the required number of indicators in the RBCS process so therefore was not assessed against any criteria but will be reviewed in future DWMP cycles | Key Catchment Statistics | | |---|-----| | 2020 Population Equivalent | 18 | | 2050 Population Equivalent | 21 | | Modelled Consented Storm Overflows | - | | Wastewater Pumping Stations | 0 | | Foul and Combined Sewer Length | 0km | | Surface Water Sewer Length | 0km | | Site of Special Scientific Interest Present | No | | Special Area of Conservation Present | No | | Priority River Habitat | No | | Catchment Wider Resilience Risk Band | Low | | C | utcon | ne Si | um m | ıary | |---|-------|-------|------|------| | | | | | | #### Sewer Flooding Risk As this catchment did not progress through to the BRAVA stage, we have not determined a risk position for our sewer flooding planning objective #### Storm Overflow Risk As this catchment did not progress through to the BRAVA stage we have not determined a risk position for our Storm Overflow planning objective #### WwTW Compliance Risk As this catchment did not progress through to the BRAVA stage or is a descriptive works, we have not determined a risk position for our WwTW Compliance risk planning objective | | Risk Based Catchment Screening | | | | | | | | | | | | | | | | | |-------------------------------|-----------------------------------|------------------------|------------------------|------|-----|----------------------------|-----------------------------|------------------------|----------------------|------------------------|--------------------|-----------------------|---------------------------------------|-------|--------------------|--------------------|---------------------| | Catchment
Characterisation | Bathing or
Shellfish
Waters | Discharge to sensitive | Discharge to sensitive | SOAF | CAF | Internal Sewer
Flooding | Externa I Sewer
Flooding | Pollution
Incidents | WwTW Q
Compliance | WwTW DWF
Compliance | Storm
Overflows | Other RMA
System s | Planned
Residential
Development | WINEP | Sewer
Collapses | Sewer
Blockages | Proceed to
BRAVA | | Yes | No # Drax Lower Ouse Outcome: Monitor | Key Catchment Statistics | | |---|-------| | 2020 Population Equivalent | 512 | | 2050 Population Equivalent | 599 | | Modelled Consented Storm Overflows | - | | Wastewater Pumping Stations | 2 | | Foul and Combined Sewer Length | 2.8km | | Surface Water Sewer Length | 0.8km | | Site of Special Scientific Interest Present | No | | Special Area of Conservation Present | No | | Priority River Habitat | No | | Catchment Wider Resilience Risk Band | Low | ### Outcome Summary Continue to monitor all potential risks in the catchment and promote once #### Sewer Flooding Risk a suitable threshold is breached By assessing our hydraulic modelling outputs or where not available, our unmodelled methodology, against our bespoke planning objective for sewer flooding, we believe this catchment represents low risk for 2050 #### Storm Overflow Risk By assessing our hydraulic modelling outputs or where not available, our unmodelled methodology, against our bespoke planning objective for Storm Overflows, we believe this catchment represents low risk for 2050 #### WwTW Compliance Risk | | Risk Based Catchment Screening | | | | | | | | | | | | | | | | | |-------------------------------|-----------------------------------|------------------------|------------------------|------|-----|----------------------------|-----------------------------|------------------------|----------------------|------------------------|--------------------|----------------------|--|-------|--------------------|--------------------|---------------------| | Catchment
Characterisation | Bathing or
Shellfish
Waters | Discharge to sensitive | Discharge to sensitive | SOAF | CAF | Internal Sewer
Flooding | Externa I Sewer
Flooding | Pollution
Incidents | WwTW Q
Compliance | WwTW DWF
Compliance | Storm
Overflows | Other RMA
Systems | Planned
Residen tia l
Developmen t | WINEP | Sewer
Collapses | Sewer
Blockages | Proceed to
BRAVA | | Yes | No Yes | Yes | No | No | Yes | YES | # Escrick Lower Ouse Work to understand in more detail the size and scale of the predicted catchment risk | Key Catchment Statistics | | |---|--------| | 2020 Population Equivalent | 1,746 | | 2050 Population Equivalent | 2,035 | | Modelled Consented Storm Overflows | - | | Wastewater Pumping Stations | 6 | | Foul and Combined Sewer Length | 5.7km | | Surface Water Sewer Length | 2.3km | | Site of Special Scientific Interest Present | No | | Special Area of Conservation Present | No | | Priority River Habitat | No | | Catchment Wider Resilience Risk Band | Medium | ### Outcome Summary #### Sewer Flooding Risk By assessing our hydraulic modelling outputs or where not available, our unmodelled methodology, against our bespoke planning objective for sewer flooding, we believe this catchment represents low risk for 2050 #### Storm Overflow Risk By assessing our hydraulic modelling outputs or where not available, our unmodelled methodology, against our bespoke planning objective for Storm Overflows, we believe this catchment represents a high risk for 2050 #### WwTW Compliance Risk | | Risk Based Catchment Screening | | | | | | | | | | | | | | | | | |-------------------------------|-----------------------------------|------------------------|------------------------|------|-----|----------------------------|-----------------------------|------------------------|-----------------------|------------------------|--------------------|-----------------------|---|-------|--------------------|--------------------|---------------------| | Catchment
Characterisation | Bathing or
Shellfish
Waters | Discharge to sensitive | Discharge to sensitive | SOAF | CAF | Internal Sewer
Flooding | Externa I Sewer
Flooding | Pollution
Incidents | WwTW Q
Com pliance | WwTW DWF
Compliance | Storm
Overflows | Other RMA
System s | Planned
Residen tia l
Development | WINEP | Sewer
Collapses | Sewer
Blockages | Proceed to
BRAVA | | Yes | No | No | No | No | No | No | Yes | No | No | No | No | No | Yes | No | No | Yes | YES | # Hambleton Lower Ouse Prom ote Develop strategic catchment based solution options to address predicted risks and look for potential opportunities for partnership working | Key Catchment Statistics | | |---|--------| | 2020 Population Equivalent | 5,019 | | 2050 Population Equivalent | 6,170 | | Modelled Consented Storm Overflows | - | | Wastewater Pumping Stations | 5 | | Foul and Combined Sewer Length | 18.8km | | Surface Water Sewer Length | 14.3km | | Site of Special Scientific Interest Present | No | | Special Area of Conservation Present | No | | Priority River Habitat | No | | Catchment Wider Resilience Risk Band | Medium | ### Outcome Summary #### Sewer Flooding Risk By assessing our hydraulic modelling outputs or where not available, our unmodelled methodology, against our bespoke planning objective for sewer flooding, we believe this catchment represents low risk for 2050 #### Storm Overflow Risk By assessing our hydraulic modelling outputs or where not available, our unmodelled methodology, against our bespoke planning objective for Storm Overflows, we believe this catchment represents low risk for 2050 #### WwTW Compliance Risk | | Risk Based Catchment Screening | | | | | | | | | | | | | | | | | |-------------------------------|-----------------------------------|------------------------|------------------------|------|-----|-----------------------------|----------------------------|------------------------|----------------------|------------------------|--------------------|----------------------|---|-------|--------------------|--------------------|---------------------| | Catchment
Characterisation | Bathing or
Shellfish
Waters | Discharge to sensitive | Discharge to sensitive | SOAF | CAF | In ternal Sewer
Flooding | External Sewer
Flooding | Pollution
Incidents | WwTW Q
Compliance | WwTW DWF
Compliance | Storm
Overflows | Other RMA
Systems | Planned
Residen tia l
Development | WINEP | Sewer
Collapses | Sewer
Blockages | Proceed to
BRAVA | | Yes | No | No | No | No | No | Yes | Yes | No | No | No | No | No | Yes | No | Yes | Yes | YES | # Hemingbrough Lower Ouse Work to understand in more detail the size and scale of the predicted $\operatorname{catchment}$ risk | Key Catchment Statistics | | |---|--------| | 2020 Population Equivalent | 2,249 | | 2050 Population Equivalent | 2,707 | | Modelled Consented Storm Overflows | - | | Wastewater Pumping Stations | 5 | | Foul and Combined Sewer Length | 8.3km | | Surface Water Sewer Length | 5.8km | | Site of Special Scientific Interest Present | No | | Special Area of Conservation Present | No | | Priority River Habitat | No | | Catchment Wider Resilience Risk Band | Medium | ### Outcome Summary #### Sewer Flooding Risk By assessing our hydraulic modelling outputs or where not available, our unmodelled methodology, against our bespoke planning objective for sewer flooding, we believe this catchment represents low risk for 2050 #### Storm Overflow Risk By assessing our hydraulic modelling outputs or where not available, our unmodelled methodology, against our bespoke planning objective for Storm Overflows, we believe this catchment represents a high risk for 2050 #### WwTW Compliance Risk | | | | | | | Risk | Basec | l Catch | nment | Screen | ing | | | | | | | |-------------------------------|-----------------------------------|------------------------|------------------------|------|-----|----------------------------|-----------------------------|------------------------|-----------------------|------------------------|--------------------|-----------------------|---|-------|--------------------|--------------------|---------------------| | Catchment
Characterisation | Bathing or
Shellfish
Waters | Discharge to sensitive | Discharge to sensitive | SOAF | CAF | Internal Sewer
Flooding | Externa I Sewer
Flooding | Pollution
Incidents | WwTW Q
Com pliance | WwTW DWF
Compliance | Storm
Overflows | Other RMA
System s | Planned
Residen tia l
Development | WINEP | Sewer
Collapses | Sewer
Blockages | Proceed to
BRAVA | | Yes | No | No | No | No | No | No | Yes | No | No | No | No | No | Yes | No | No | Yes | YES | # Kelfield Lower Ouse Work to understand in more detail the size and scale of the predicted catchment risk | Key Catchment Statistics | | |---|-------| | 2020 Population Equivalent | 1,814 | | 2050 Population Equivalent | 2,238 | | Modelled Consented Storm Overflows | - | | Wastewater Pumping Stations | 12 | | Foul and Combined Sewer Length | 8.1km | | Surface Water Sewer Length | 1.8km | | Site of Special Scientific Interest Present | No | | Special Area of Conservation Present | No | | Priority River Habitat | No | | Catchment Wider Resilience Risk Band | High | ### Outcome Summary #### Sewer Flooding Risk By assessing our hydraulic modelling outputs or where not available, our unmodelled methodology, against our bespoke planning objective for sewer flooding, we believe this catchment represents low risk for 2050 #### Storm Overflow Risk By assessing our hydraulic modelling outputs or where not available, our unmodelled methodology, against our bespoke planning objective for Storm Overflows, we believe this catchment represents a high risk for 2050 #### WwTW Compliance Risk | | | | | | | Risk | Based | l Catch | nment | Screen | ing | | | | | | | |-------------------------------|-----------------------------------|------------------------|------------------------|------|-----|-----------------------------|----------------------------|------------------------|----------------------|------------------------|--------------------|----------------------|---|-------|--------------------|--------------------|---------------------| | Catchment
Characterisation | Bathing or
Shellfish
Waters | Discharge to sensitive | Discharge to sensitive | SOAF | CAF | In ternal Sewer
Flooding | External Sewer
Flooding | Pollution
Incidents | WwTW Q
Compliance | WwTW DWF
Compliance | Storm
Overflows | Other RMA
Systems | Planned
Residen tia l
Development | WINEP | Sewer
Collapses | Sewer
Blockages | Proceed to
BRAVA | | Yes | No Yes | Yes | Yes | Yes | Yes | YES | # Micklefield Lower Ouse Promote Develop strategic catchment based solution options to address predicted risks and look for potential opportunities for partnership working | Key Catchment Statistics | | |---|--------| | 2020 Population Equivalent | 2,014 | | 2050 Population Equivalent | 2,529 | | Modelled Consented Storm Overflows | 3 | | Wastewater Pumping Stations | 0 | | Foul and Combined Sewer Length | 10.9km | | Surface Water Sewer Length | 6.6km | | Site of Special Scientific Interest Present | Yes | | Special Area of Conservation Present | No | | Priority River Habitat | No | | Catchment Wider Resilience Risk Band | Low | ### Outcome Summary #### Sewer Flooding Risk By assessing our hydraulic modelling outputs or where not available, our unmodelled methodology, against our bespoke planning objective for sewer flooding, we believe this catchment represents low risk for 2050 #### Storm Overflow Risk By assessing our hydraulic modelling outputs or where not available, our unmodelled methodology, against our bespoke planning objective for Storm Overflows, we believe this catchment represents a high risk for 2050 #### WwTW Compliance Risk # North Duffield Lower Ouse Prom ote Develop strategic catchment based solution options to address predicted risks and look for potential opportunities for partnership working | Key Catchment Statistics | | |---|-------| | 2020 Population Equivalent | 1,568 | | 2050 Population Equivalent | 1,874 | | Modelled Consented Storm Overflows | - | | Wastewater Pumping Stations | 2 | | Foul and Combined Sewer Length | 6.3km | | Surface Water Sewer Length | 4.1km | | Site of Special Scientific Interest Present | Yes | | Special Area of Conservation Present | Yes | | Priority River Habitat | No | | Catchment Wider Resilience Risk Band | Low | #### Outcome Summary #### Sewer Flooding Risk By assessing our hydraulic modelling outputs or where not available, our unmodelled methodology, against our bespoke planning objective for sewer flooding, we believe this catchment represents low risk for 2050 #### Storm Overflow Risk By assessing our hydraulic modelling outputs or where not available, our unmodelled methodology, against our bespoke planning objective for Storm Overflows, we believe this catchment represents low risk for 2050 #### WwTW Compliance Risk | | | | | | | Risk | Based | l Catch | nment | Screen | ing | | | | | | | |-------------------------------|-----------------------------------|------------------------|------------------------|------|-----|-----------------------------|-----------------------------|------------------------|----------------------|------------------------|--------------------|-----------------------|--|-------|--------------------|--------------------|---------------------| | Catchment
Characterisation | Bathing or
Shellfish
Waters | Discharge to sensitive | Discharge to sensitive | SOAF | CAF | In ternal Sewer
Flooding | Externa I Sewer
Flooding | Pollution
Incidents | WwTW Q
Compliance | WwTW DWF
Compliance | Storm
Overflows | Other RMA
System s | Planned
Residen tia l
Developmen t | WINEP | Sewer
Collapses | Sewer
Blockages | Proceed to
BRAVA | | Yes | No Yes | No | No | Yes | YES | # Selby Lower Ouse ## Key Catchment Statistics 26,435 2020 Population Equivalent 2050 Population Equivalent 31,866 Modelled Consented Storm Overflows Wastewater Pumping Stations 19 Foul and Combined Sewer Length 85.9km Surface Water Sewer Length 42.1km Site of Special Scientific Interest Present No Special Area of Conservation Present No Priority River Habitat Catchment Wider Resilience Risk Band Outcom e: Promote ### Develop strategic catchment based solution options to address predicted risks and look for potential opportunities for partnership working | Sewer Flooding Risk | |--| | By assessing our hydraulic modelling outputs or where not available, our unmodelled methodology, against our bespoke planning objective for sewer flooding, we believe this catchment represents a high risk for 2050 | | Storm Overflow Risk | | By assessing our hydraulic modelling outputs or where not available, our unmodelled methodology, against our bespoke planning objective for Storm Overflows, we believe this catchment represents a moderate risk for 2050 | | WwTW Compliance Risk | | By assessing our hydraulic modelling outputs or where not available, our unmodelled methodology, against our bespoke planning objective for WwTW Compliance risk, we | Outcome Summary | | | Risk Based Catchment Screening | | | | | | | | | | | | | | | | |-------------------------------|-----------------------------------|--------------------------------|------------------------|------|-----|-----------------------------|-----------------------------|------------------------|----------------------|------------------------|--------------------|----------------------|--|-------|--------------------|--------------------|---------------------| | Catchment
Characterisation | Bathing or
Shellfish
Waters | Discharge to sensitive | Discharge to sensitive | SOAF | CAF | In ternal Sewer
Flooding | Externa I Sewer
Flooding | Pollution
Incidents | WwTW Q
Compliance | WwTW DWF
Compliance | Storm
Overflows | Other RMA
Systems | Planned
Residen tia l
Developmen t | WINEP | Sewer
Collapses | Sewer
Blockages | Proceed to
BRAVA | | Yes | No | No | No | No | No | Yes | Yes | No | No | No | No | Yes | Yes | Yes | Yes | Yes | YES | No High | Na ⁻ | tional E | Baselin | e Risk | and Vu | Inerab | ility As | sessm | ent | Bespoke Planning Objectives | | | | | | | | | | | |---|------------------------------|-----------------------------------|--|--|---|--|--|--|--------------------------------------|--------------------------------------|--------------------------------------|---|---|---|----------------------------------|----------------------------------|----------------------------------|--|--| | Intemal Sewer
Flooding 2020
Score | Pollution Risk
2020 Score | Sewer Collapse
Risk 2020 Score | Risk of Sewer
Flooding (1in
50) 2020 Score | Risk of Sewer
Flooding (1in
50) 2050 Score | Storm Overflow
Performance
2020 Score | Storm Overflow
Perform ance
2050 Score | Risk of WwTW
Compliance
Failure 2020 | Risk of WwTW
Compliance Failure
2050 | Annualised
Flooding 2020
Score | Annualised
Flooding 2030
Score | Annualised
Flooding 2050
Score | Overflows
Perform ance
2020 Score | Overflows
Perform ance
2030 Score | Overflows
Perform ance
2050 Score | WwTW
Compliance
2020 Score | WwTW
Compliance
2030 Score | WwTW
Compliance
2050 Score | | | | 2 | 0 | 0 | 1 | 1 | 2 | 2 | 0 | 0 | 4 | 4.5 | 5 | 3 | 3 | 3 | 1 | 1 | 2 | | | | • | 0 | | | 1 | | | | 2 | | 0 | 1 | 2 | , | 3 | 4 | | 5 | | | | | | | ery
nificant | Lov | er Risk | ı | 2 | | J | 4 | High | er Risk | | | | | | | | believe this catchment represents low risk for 2050 # Selby Barlow Lower Ouse Monitor Continue to monitor all potential risks in the catchment and promote once a suitable threshold is breached | Key Catchment Statistics | | |---|--------| | 2020 Population Equivalent | 659 | | 2050 Population Equivalent | 779 | | Modelled Consented Storm Overflows | - | | Wastewater Pumping Stations | 4 | | Foul and Combined Sewer Length | 2.3km | | Surface Water Sewer Length | 2.3km | | Site of Special Scientific Interest Present | No | | Special Area of Conservation Present | No | | Priority River Habitat | No | | Catchment Wider Resilience Risk Band | Medium | ### Outcome Summary #### Sewer Flooding Risk By assessing our hydraulic modelling outputs or where not available, our unmodelled methodology, against our bespoke planning objective for sewer flooding, we believe this catchment represents low risk for 2050 #### Storm Overflow Risk By assessing our hydraulic modelling outputs or where not available, our unmodelled methodology, against our bespoke planning objective for Storm Overflows, we believe this catchment represents low risk for 2050 #### WwTW Compliance Risk # Sherburn in elm et Lower Ouse Prom ote Develop strategic catchment based solution options to address predicted risks and look for potential opportunities for partnership working | Key Catchment Statistics | | |---|--------| | 2020 Population Equivalent | 12,379 | | 2050 Population Equivalent | 15,125 | | Modelled Consented Storm Overflows | 3 | | Wastewater Pumping Stations | 24 | | Foul and Combined Sewer Length | 48.7km | | Surface Water Sewer Length | 34.2km | | Site of Special Scientific Interest Present | No | | Special Area of Conservation Present | No | | Priority River Habitat | No | | Catchment Wider Resilience Risk Band | High | ### Outcome Summary #### Sewer Flooding Risk By assessing our hydraulic modelling outputs or where not available, our unmodelled methodology, against our bespoke planning objective for sewer flooding, we believe this catchment represents a moderate risk for 2050 #### Storm Overflow Risk By assessing our hydraulic modelling outputs or where not available, our unmodelled methodology, against our bespoke planning objective for Storm Overflows, we believe this catchment represents a moderate risk for 2050 #### WwTW Compliance Risk | | | | | | | Risk | Based | l Catch | nment | Screen | ing | | | | | | | |-------------------------------|-----------------------------------|------------------------|------------------------|------|-----|-----------------------------|----------------------------|------------------------|----------------------|------------------------|--------------------|-----------------------|---|-------|--------------------|--------------------|---------------------| | Catchment
Characterisation | Bathing or
Shellfish
Waters | Discharge to sensitive | Discharge to sensitive | SOAF | CAF | In ternal Sewer
Flooding | External Sewer
Flooding | Pollution
Incidents | WwTW Q
Compliance | WwTW DWF
Compliance | Storm
Overflows | Other RMA
System s | Planned
Residen tia l
Development | WINEP | Sewer
Collapses | Sewer
Blockages | Proceed to
BRAVA | | Yes | No | No | No | No | No | Yes | Yes | No | No | No | No | No | Yes | Yes | Yes | Yes | YES | # Thorganby Lower Ouse Observe Did not trigger the required number of indicators in the RBCS process so therefore was not assessed against any criteria but will be reviewed in future DWMP cycles | Key Catchment Statistics | | |---|-------| | 2020 Population Equivalent | 243 | | 2050 Population Equivalent | 291 | | Modelled Consented Storm Overflows | - | | Wastewater Pumping Stations | 0 | | Foul and Combined Sewer Length | 0.2km | | Surface Water Sewer Length | 0.4km | | Site of Special Scientific Interest Present | No | | Special Area of Conservation Present | No | | Priority River Habitat | No | | Catchment Wider Resilience Risk Band | Low | ### Outcome Summary #### Sewer Flooding Risk As this catchment did not progress through to the BRAVA stage, we have not determined a risk position for our sewer flooding planning objective #### Storm Overflow Risk As this catchment did not progress through to the BRAVA stage we have not determined a risk position for our Storm Overflow planning objective #### WwTW Compliance Risk As this catchment did not progress through to the BRAVA stage or is a descriptive works, we have not determined a risk position for our WwTW Compliance risk planning objective # Thorpe Willoughby Lower Ouse | Key Catchment Statistics | | |---|-------| | 2020 Population Equivalent | 9 | | 2050 Population Equivalent | 11 | | Modelled Consented Storm Overflows | - | | Wastewater Pumping Stations | 0 | | Foul and Combined Sewer Length | 0.1km | | Surface Water Sewer Length | 0.1km | | Site of Special Scientific Interest Present | No | | Special Area of Conservation Present | No | | Priority River Habitat | No | | Catchment Wider Resilience Risk Band | Low | Did not trigger the required number of indicators in the RBCS process so therefore was not assessed against any criteria but will be reviewed in future DWMP cycles | Outcome Summary | |-----------------| | | #### Sewer Flooding Risk As this catchment did not progress through to the BRAVA stage, we have not determined a risk position for our sewer flooding planning objective #### Storm Overflow Risk As this catchment did not progress through to the BRAVA stage we have not determined a risk position for our Storm Overflow planning objective #### WwTW Compliance Risk As this catchment did not progress through to the BRAVA stage or is a descriptive works, we have not determined a risk position for our WwTW Compliance risk planning objective | | Risk Based Catchment Screening | | | | | | | | | | | | | | | | | |-------------------------------|-----------------------------------|------------------------|------------------------|------|-----|----------------------------|-----------------------------|------------------------|----------------------|------------------------|--------------------|----------------------|---------------------------------------|-------|--------------------|--------------------|---------------------| | Catchment
Characterisation | Bathing or
Shellfish
Waters | Discharge to sensitive | Discharge to sensitive | SOAF | CAF | Internal Sewer
Flooding | Externa I Sewer
Flooding | Pollution
Incidents | WwTW Q
Compliance | WwTW DWF
Compliance | Storm
Overflows | Other RMA
Systems | Planned
Residential
Development | WINEP | Sewer
Collapses | Sewer
Blockages | Proceed to
BRAVA | | Yes | No # Wistow Lower Ouse Sycamore House Farm Holme Farm Work to understand in more detail the size and scale of the predicted $\operatorname{catchment}$ risk | Key Catchment Statistics | | |---|--------| | 2020 Population Equivalent | 1,249 | | 2050 Population Equivalent | 1,476 | | Modelled Consented Storm Overflows | - | | Wastewater Pumping Stations | 4 | | Foul and Combined Sewer Length | 5.4km | | Surface Water Sewer Length | 0.9km | | Site of Special Scientific Interest Present | No | | Special Area of Conservation Present | No | | Priority River Habitat | No | | Catchment Wider Resilience Risk Band | Medium | #### Sewer Flooding Risk By assessing our hydraulic modelling outputs or where not available, our unmodelled methodology, against our bespoke planning objective for sewer flooding, we believe this catchment represents low risk for 2050 #### Storm Overflow Risk By assessing our hydraulic modelling outputs or where not available, our unmodelled methodology, against our bespoke planning objective for Storm Overflows, we believe this catchment represents a high risk for 2050 #### WwTW Compliance Risk | | Risk Based Catchment Screening | | | | | | | | | | | | | | | | | |-------------------------------|-----------------------------------|------------------------|------------------------|------|-----|----------------------------|-----------------------------|------------------------|----------------------|------------------------|--------------------|----------------------|--|-------|--------------------|--------------------|---------------------| | Catchment
Characterisation | Bathing or
Shellfish
Waters | Discharge to sensitive | Discharge to sensitive | SOAF | CAF | Internal Sewer
Flooding | Externa I Sewer
Flooding | Pollution
Incidents | WwTW Q
Compliance | WwTW DWF
Compliance | Storm
Overflows | Other RMA
Systems | Planned
Residen tial
Development | WINEP | Sewer
Collapses | Sewer
Blockages | Proceed to
BRAVA | | Yes | No Yes | No | No | Yes | YES |